Simulation of electron cloud effects in Project X Main Injector

J.-L. Vay, M. Furman

Lawrence Berkeley National Laboratory, CA, USA

JLVay@lbl.gov, MAFurman@lbl.gov

SciDAC-3 ComPASS collaboration meeting – September 28, 2012

Outline

- Electron cloud effects & codes
- Recent achievements under SciDAC-II
- Plans for SciDAC-III

Electron-cloud driven instability observed in high-intensity rings

In FNAL main injector (MI), instability is seeded by residual gas

- residual gas are ionized by particle bunches,
- electrons get accelerated by bunches and eventually reach walls,
- secondary emission of electrons at walls multiply # of electrons,
- electron density rises exponentially until saturation is reached,
- Interaction of electron clouds may be resonant and degrade bunches quality.

2D-PIC code Posinst used for modeling of electron cloud buildup

- Monte-Carlo generation of electrons with energy and angular dependence,
- phenomenological model: adjustable parameters fixed by fitting to data,
- also used successfully in space industry for study of satellites electrical charging.

Posinst has advanced secondary electrons model (also distributed in Txphysics)

Warp is used for studying the effect of e-clouds on the beam

Geometry: 3-D(x,y,z)axisym. (r,z) 2-D(x,z)2-D(x,y)ΧA Reference frame: moving-window Lorentz boosted lab γ (z-vt); γ (t-vz/c²)

z-vt

Field solvers

electrostatic/magnetostatic - FFT, multigrid; AMR; implicit; cut-cell boundaries

Versatile conductor generator accommodates complicated structures

around ion beam source emitter

- Fully electromagnetic Yee mesh, PML, MR
- Accelerator lattice: general; non-paraxial; can read MAD files

Ζ

solenoids, dipoles, quads, sextupoles, linear maps, arbitrary fields, acceleration.

Particle emission & collisions

- particle emission: space charge limited, thermionic, hybrid, arbitrary,
- secondary e- emission (Posinst), ion-impact electron emission (Txphysics) & gas emission,
- Monte Carlo collisions: ionization, capture, charge exchange.

Warp is parallel, combining modern and efficient programming languages

• Parallellization: MPI (1, 2 and 3D domain decomposition)

Parallel strong scaling of Warp 3D PIC-EM solver on Franklin supercomputer (NERSC)

• Python and FORTRAN*: "steerable," input decks are programs

From warp import *

...

nx = ny = nz = 32

dt = 0.5*dz/vbeam

...

initialize()

step(zmax/(dt*vbeam))

...

Imports Warp modules and routines in memory

Sets # of grid cells

Sets time step

Initializes internal FORTRAN arrays

Pushes particles for N time steps with FORTRAN routines

^{*}http://hifweb.lbl.gov/Forthon (wrapper supports FORTRAN90 derived types) – dpgrote@lbl.gov

Warp's versatile programmable framework allows great adaptability

Moving window Example: Beam generation & transport

Standard PIC Laboratory frame

Example:

Alpha anti-H trap

Lorentz Boosted frame

Example:

Laser plasma acceleration

Non-standard PIC

Steady flow

Example: Injector design

Quasi-static

Example: electron cloud studies

Outline

- Electron cloud effects & codes
- Recent achievements under SciDAC-II
- Plans for SciDAC-III

Under SciDAC-2, the Warp-Posinst package got further integrated

Python provides the 'glue' for the 2 codes

Warp's mesh refinement & parallelism provide efficiency

This enabled fully self-consistent simulation of e-cloud effects (build-up & beam dynamics)

Electrons after 500 turns

Bunches 35 and 36 after 500 turns

SciDAC-2: first direct simulation of a train of 3x72 bunches* -- using 9,600 CPUs on Franklin supercomputer (NERSC, U.S.A.)

E-cloud density raise coincides with growth of vertical emittance

=> Positive coupling between the e-cloud buildup and the bunches dynamical response.

Similar effect for MI?

Simulations of EC buildup in MI exhibited large fluctuations

Fluctuations tentatively attibuted to physical or numerical virtual cathode.

However, Posinst simulations from P. Lebrun* were quiet

-- conditions similar but not identical to run with noise shown on previous slide

Even at lower SEY (≈ 1.4), there are no indications of sudden and seemingly chaotic change in density, i.e., no "virtual cathode" effects mentioned in reference [5].

Maximum limit of macro-electrons raised from 100k to 2M. Higher number of macro-electrons provided quieter results.

^{*}P. Lebrun, J. Amundson, P. Spentzouris, S. Veitzer, "A comparison and benchmark of two electron cloud packages: POSINST and VORPAL."

Recent Posinst simulations show that large fluctuations are due to wide range of macroparticle weights

Run 1 (red): 35 culling events \rightarrow range of weights spans $2^{35} > 10^{10}$ Run 2 (blue): 3 culling events \rightarrow range of weights spans $2^3 < 10$

→ Culling events need to be scarce by setting high threshold or raising floor of weight values.

Outline

- Electron cloud effects & codes
- Recent achievements under SciDAC-II
- Plans for SciDAC-III

Plans for SciDAC-3

2013: mesh refinement (Warp); benchmarking vs Posinst & Vorpal

- 2014: study and improve adaptive macro-particle management (splitting, culling, coalescence)
- 2015: high fidelity fully self-consistent modeling of electron cloud effects on bunch train in MI; benchmarking w/ Synergia & expt

Plans for SciDAC-3

2013: mesh refinement (Warp); benchmarking vs Posinst & Vorpal

- 2014: study and improve adaptive macro-particle management (splitting, culling, coalescence)
- 2015: high fidelity fully self-consistent modeling of electron cloud effects on bunch train in MI; benchmarking w/ Synergia & expt

Questions about Posinst, contact:

Miguel Furman (MAFurman@lbl.gov)

Questions about Warp, contact:

David Grote (DPGrote@lbl.gov)

Jean-Luc Vay (JLVay@lbl.gov)

Alex Friedman (AFriedman@lbl.gov)

Extra Slides

Electrostatic mesh refinement method: spurious self-force

particle feels its own field and can be trapped in patch 26 × 25 Time 30 ┌ MR patch Position 50 No refinement Warp linear MC linear² 10 Warp quad. MC quad. 0 100 200 300 500 400 0 Timestep

- (1) Vay et al., Laser Part. Beams 20 (2002)
- (2) McCorquodale et al., J. Comput. Phys. **201** (2004)

Spurious self-force decreases rapidly in patch

Spurious self-force mitigated in Warp using guard cells

Warp's electrostatic MR solver^{1,2}

- 1 solve on coarse grid,
- 2 interpolate on fine grid boundaries,
- 3 solve on fine grid,
- 4 disregard fine grid solution close to edge when gathering force onto particles.

Guard cells provide user control of relative magnitude of spurious force⁽²⁾.

- (1) Vay et al., Laser Part. Beams 20 (2002)
- (2) Vay et al., Phys. Plasmas 11 (2004)

Example with 2 and 4 guard cells

Example of application to AMR simulations of ion source -- speedup from AMR x10

Warp's Electromagnetic MR uses PML & substitution to prevent reflections

Warp's electromagnetic MR solver

- Termination of patches with PML avoids spurious reflections
- Guard cell used for mitigating spurious self-force

*Vay, Adam, Heron, Comp. Phys. Comm. 164 (2004)

Electromagnetic MR simulation of beam-induced plasma wake

Speedup x10 in 3D (using the same time steps for all refinement levels).

Pattern of stripes in the history of vertical bunch offsets

⇒ phase of the oscillations is not purely random

E-cloud provides coupling between bunches.

Comparison with experimental measurements -- collaboration with SLAC/CERN

Good qualitative agreement: separation between core and tail with similar tune shift.

Warp is also applied to study of feedback control system (R. Secondo in collaboration with SLAC)

Benchmarked against dedicated experiment on HCX

Short experiment => need to deliberately amplify electron effects: let beam hit end-plate to generate copious electrons which propagate upstream.

Detailed exploration of dynamics of electrons in quadrupole

Study of virtual cathode using axisymmetric XOOPIC¹ model

right boundary: absorbing, with emission of electrons.

Phase space hole eventually collapses due to VC oscillations

¹ Verboncoeur et al., Comp. Phys. Comm. 87, 199 (1995)

Spurious oscillations observed when VC is not resolved

Potential in vicinity of virtual cathode region (t=2 μ s, Δ t=0.2ns)

$$-70 \le \Phi_{\min} \le -25 \,\mathrm{V}$$

Mesh refinement very helpful for modeling of HCX magnetic section!

